Virginia Tech
Browse
ARCHIVE
BEM_code_NSF_report_optofluidics.zip (1.36 MB)
DOCUMENT
FileDescriptions.rtf (15.71 kB)
1/0
2 files

Nonlinear Optofluidic Processes in Microdroplets

dataset
posted on 2021-02-23, 20:41 authored by Peng Zhang, Sunny Jung
High quality (Q) factor whispering gallery modes (WGMs) can induce nonlinear effects in liquid droplets through radiation pressure, light scattering, thermocapillarity, Kerr nonlinearity, and thermal effect. In our recent studies published in Physical Review E, we investigated such effects on a micron-sized liquid spherical resonator. In the first study, numerical analyses based on the boundary element method helped to quantify the deformation of the droplet under the radiation pressure. We showed that the nonlinear optofluidic effect induced by the radiation pressure is stronger than the Kerr effect and the thermal effects. We further confirmed the possibility that it may only take a few photons to produce measurable WGM resonance shift through radiation-pressure-induced droplet deformation. The effect of the scattering force on the interfacial dynamics of the droplet was quantified in the second study. The interface deformation produced by the thermocapillarity as a result of the WGM energy absorption and temperature increase was also explored. We developed a boundary element program to calculate the fluid motion and quantify the nonlinearity induced by the optical scattering force and thermocapillarity. Our work provides a numerical tool for the study of optofluidic phenomena in liquid microdroplets.

History

Publisher

University Libraries, Virginia Tech

Usage metrics

    Virginia Polytechnic Institute and State University

    Categories

    No categories selected

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC