Inundation projections from Sea Level Rise (SLR), Vertical Land Motion (VLM), and storm surge for hurricane Isabel at climate scenarios namely Shared Socioeconomic Pathways (SSPs) 1-1.9, 1-2.6, 2-4.5, 3-7.0 and 5-8.5 at three-time scales (2030-2050-2100) at medium confidence, median values, likely ranges upper and lower (for three selected SSPs: see below) are provided. Additionally, the inundated area from SLR, Subsidence at SSP 1-2.6 and 5-8.5 for likely ranges (upper and lower) at low confidence scenarios are provided.
Sentinel-1 and ALOS data from 2007-2020 are processed used WabInSAR algorithm. We use future SLR scenarios from the Sixth Assessment Report (AR6) following SSPs adopted by the IPCC for projection periods of 2030, 2050 till 2100, relative to a baseline of 1995-2014 with medium confidence and low confidence.
Anyone wishing to use this dataset should cite Sherpa et al. 2022) and contact Sonam Futi Sherpa at sfsherpa@vt.edu for any questions with details of their work, so that we may offer guidance in regards to the best usage of our produced inundation scenarios dataset.
Publisher
University Libraries, Virginia TechLocation
Blacksburg, VA, USACorresponding Author Name
Sonam Futi SherpaFiles/Folders in Dataset and Description
There are 23 compressed files as listed below. SUB_INUN represents inundation from subsidence only, SLR_inundation represents inundation from only sea-level rise, SLR_SUB indicates inundation from both sea-level rise and subsidence, SLR_SUB_StormSurge represents inundation from sea level rise, subsidence and storm surge including either hurricane Isabel. “medium” represents medium confidence, “low” represents low confidence, “median” is 50th percentile, “upperbound” is 83th percentile, “lowerbound” is 17th percentile and “ssp” is shared socioeconomic pathways.
1. SUB_INUN
2. SLR _inundation_medium_median_ssp119
3. SLR _inundation_medium_median_ssp370
4. SLR _inundation_medium_median_ssp585
5. SLR_StormSurge_Isabel_inundation_medium_median_ssp585
6. SLR_SUB_inundation_medium_median_ssp119
7. SLR_SUB_inundation_medium_median_ssp126
8. SLR_SUB_inundation_medium_median_ssp245
9. SLR_SUB_inundation_medium_median_ssp370
10. SLR_SUB_inundation_medium_median_ssp585
11. SLR_SUB_StormSurge_Isabel_inundation_medium_median_ssp585
12. SLR_SUB_inundation_medium_lowerbound_ssp119
13. SLR_SUB_inundation_medium_lowerbound_ssp370
14. SLR_SUB_inundation_medium_lowerbound_ssp585
15. SLR_SUB_StormSurge_Isabel_inundation_lowerbound_median_ssp585
16. SLR_SUB_inundation_medium_upperbound_ssp119
17. SLR_SUB_inundation_medium_upperbound_ssp370
18. SLR_SUB_inundation_medium_upperbound_ssp585
19. SLR_SUB_StormSurge_Isabel_inundation_upperbound_median_ssp585
20. SLR_SUB_inundation_low_lowerbound_ssp126
21. SLR_SUB_inundation_low_lowerbound_ssp585
22. SLR_SUB_inundation_low_upperbound_ssp126
23. SLR_SUB_inundation_low_upperbound_ssp585
Each folder consists of three CSV files for three time periods 2030,2050, 2100 and respective png images and Matlab file to plot the dataset.
For example, in a folder "SLR_SUB_inundation_medium_median_ssp119", it consists of following:
• SLR_SUB_Inundation_Map_SSP119_2030.csv (for e.g.) column #1: longitude(deg), column #2: Latitude(deg) : Locations of the inundation area for 2030 in SSP 119 while considering both sea level rise (SLR) and Subsidence (SUB).
• CB_inundation_plot.m: MATLAB script to plot the dataset
• SLR_SUB_Inundation_Map_SSP119_2030.png
This is available for all SSPs at medium confidence, median values and likely ranges for selected SSPs at low confidence (see above).
Cite this as:
Sherpa, S. F., Shirzaei, M., & Ojha, C. (2022, Under review). Disruptive Role of Vertical Land Motion in Future Assessments of Climate Change-Driven Sea Level Rise and Coastal Flooding Hazards in the Chesapeake Bay.
Also see citations below for details.
1. Blackwell, E., Shirzaei, M., Ojha, C., & Werth, S. (2020). Tracking California’s sinking coast from space: Implications for relative sea-level rise. Science Advances. https://doi.org/10.1126/sciadv.aba4551
2. Fox-Kemper, B., Hewitt, H. T., Aðalgeirsdóttir, G., Drijfhout, S. S., Edwards, T. L., Golledge, N. R., et al. (2021). Ocean, Cryosphere and Sea Level Change. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [MassonDelmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press. In Press.
3. Garner, G. G., Hermans, T., Kopp, R. E., Slangen, A. B. A., Edwards, T. L., Levermann, S., et al. (2021). IPCC AR6 Sea-Level Rise Projections. Version 20210809. PO. DAAC, CA, USA.
4. Garner, G. G., Kopp, R. E., Hermans, T., Slangen, A. B. A., Koubbe, M., Turilli, M., et al. (In prep). Framework for Assessing Changes To Sea-level (FACTS). Geoscientific Model Development.
5. Sherpa, S. F., Shirzaei, M., & Ojha, C. (2022, April 26). Disruptive Role of Vertical Land Motion in Future Assessments of Climate Change-Driven Sea Level Rise and Coastal Flooding Hazards in the Chesapeake Bay. Earth and Space Science Open Archive. https://doi.org/10.1002/essoar.10511192.1
6. Shirzaei, M. (2013). A Wavelet-Based Multitemporal DInSAR Algorithm for Monitoring Ground Surface Motion. IEEE Geoscience and Remote Sensing Letters, 10(3), 456-460. https://doi.org/10.1109/LGRS.2012.2208935
7. Shirzaei, M., & Bürgmann, R. (2012). Topography correlated atmospheric delay correction in radar interferometry using wavelet transforms. Geophysical Research Letters, 39(1). https://doi.org/10.1029/2011GL049971
8. Shirzaei, M., Bürgmann, R., & Fielding, E. J. (2017). Applicability of Sentinel-1 Terrain Observation by Progressive Scans multitemporal interferometry for monitoring slow ground motions in the San Francisco Bay Area. Geophysical Research Letters, 44(6), 2733-2742. https://doi.org/10.1002/2017GL072663
9. Shirzaei, M., & Bürgmann, R. (2018). Global climate change and local land subsidence exacerbate inundation risk to the San Francisco Bay Area. Science Advances, 4(3), eaap9234. https://doi.org/10.1126/sciadv.aap9234
10. Miller, M. M., & Shirzaei, M. (2021). Assessment of future flood hazards for southeastern Texas: Synthesizing subsidence, sea-level rise, and storm surge scenarios. Geophysical Research Letters, 48(8), e2021GL092544.